Cover Image

Electrochemical deposition of Zinc on mild steel

Moussa Ouakki, Asmae El Fazazi, Mohammed Cherkaoui

Abstract


Zn coating electrodeposited on a mild steel substrate in an acid bath was investigated using cyclic voltammetric and chronopotentiometry techniques. The effect of the current density on the deposition potential, the thickness of the deposit, deposition rate and current efficiency was investigated. The chemical composition and surface morphology of Zn coatings are characterized using Energy Dispersive X-Ray (EDX) spectrometer and Scanning Electron Microscopy (SEM), respectively. SEM observations indicated that the morphology of the film surface was modified from dense and uniaxial to disperse and dendritic with increasing the current density. The EDX analyses revealed the presence of Zn and O in the deposit.


Full Text:

PDF

References


- Ö. Rasim, H.K. Ismail and K. Orhan, A Study on the Electrodeposited Cu-Zn Alloy Thin Films. Metallurgical and materials transactions a, 2016, 47A, 5609-5617.

- Y. Yang, S. Liu, X. Yu, C. Huang, S. Chen, G. Chen and Q.H. Wu, Effect of additive on zinc electrodeposition in acidic bath, Surface Engineering, 2014, 000, 1-6.

- K.R. Sriraman, S. Brahimi, J.A. Szpunar, J.H. Osborne and S. Yue: Characterization of corrosion resistance of electrodeposited Zn-Ni Zn and Cd coatings, Electrochimica Acta, 2013, 105, 314-323.

- D.K. Sahoo, H. Singh and N. Krishnamurthy, Electrochemical deposition of La-Mg alloys in LaCl3-MgCl2- KCl system with molten salt electrolysis process, J. Min. Metall. Sect. B-Metall. 2014, 50 (2) B, 109-114.

- N. Loukil and M. Feki, Electrodeposition of Zn-Mn alloy coatings deposited from acidic chloride baths, Effect of deposition conditions on the Zn-Mn electroplating, morphological and structural characterization, Applied Surface Science, Applied Surface Science, 2017, 410, 574-584, doi: 10.1016/j.apsusc.2017.02.075.

- D. Sylla, J. Creus, C. Savall, O. Roggy, M. Gadouleau, Ph. Refait, Electrodeposition of Zn-Mn alloys on steel from acidic Zn-Mn chloride solutions, Thin Solid Films, 2003, 424, 171-178

- R. Tena-Zaera, J. Elias, G. Wang, and C. Levy-Clement, Role of Chloride Ions on Electrochemical Deposition of ZnO Nanowire Arrays from O2 Reduction, J. Phys. Chem.C, 2007, 111, 16706- 16711.

- M. Celeste C. Azevedo and Ana M.V. Cavaleiro, The Acid-Base Titration of a Very Weak Acid: Boric Acid, Journal of chemical education, 2012, 89, 767−770.

- P.C. Foller, Improved slurry zinc/air systems as batteries for urban vehicle propulsion, Journal of applied electrochemistry, 1986, 16, 527-543.

- N.N. Che Isa, Y. Mohd, M. H. Mohd Zaki and S.A. Syed Mohamad, Characterization of Copper Coating Electrodeposited on Stainless Steel Substrate, International Journal of Electrochemical Science, 2017, 12, 6010-6021, doi: 10.20964/2017.07.58.

- A.E. Elsherie, Effects of cobalt, temperature and certain impurities upon cobalt electro-winning from sulfate solutions. Journal of Applied Electrochemistry, 2003, 33, 43-49.

- E.C. Pereira, J.S. Santos, R. Matos and F. Trivinho-Strixino, Effect of temperature on co-electrodeposition in the presence of boric acid, Electrochimica Acta, 2007, 53, 644-649.

- D. C. W. Kannangara and B. E. Conway, Zinc Oxidation and Redeposition Processesand Carbonate Solutions in Aqueous Alkali. J. Electrochem. Soc., Electrochemical Science and Technology, 1987, 134, N°4, 894-905.

- A. P. Chatterjee, P. Mitra and A. K. Mukhopadhyay, chemically deposited zinc oxide thin film gas sensor, Journal of materials science, 1999, 34, 4225-4231

- R. Sekar, S. Jayakrishnan and V. S. Muralidharan, Electrochemical behaviour of zinc acetate complexes: a cyclic voltammetry study, Transactions of the Institute of Metal Finishing, 2005, 83, 300-302.

- Trémillon B., Electrochimie analytique et réactions en solution-Tome 2 Réactions et méthodes électrochimiques; ed. By Masson: Paris, 1993.

- R.S. Nicholson and I. Shain, Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Analytical Chemistry, 1964, 36, 706-723.

- T. Boiadjieva, M. Monev, A. Tomandl, H. Kronberger, and G. Fafilek, Electrochemical studies on Zn deposition and dissolution in sulphate electrolyte, Journal of Solid State Electrochemistry, 2009, doi: 10.1007/s10008-008-0594-3.

- T. Casanova, F. Soto, M. Eyraud and J. Crousier, Hydrogen absorption during zinc plating on steel, Corrosion Science, 1997,39, 529-537.

- Tz. Boiadjieva-Scherzer, H. Kronberger, G. Fafilek and M. Monev, Hydrogen evolution reaction on electrodeposited Zn-Cr alloy coatings, Journal of Electroanalytical Chemistry, 2016. doi: 10.1016/j.jelechem.2016.10.059.

- M. Monev, L. Mirkova, I. Krastev, Hr. Tsvetkova and St. Rashkov, Effect of brighteners on hydrogen evolution during zinc electroplating from zincate electrolytes, Journal of applied electrochemistry, 1998, 28, 1107-1112.

- D. R. Gabe: The role of hydrogen in metal electrodeposition Processes. Journal of applied electrochemistry,

, 27, 908-915.

- J. Dundálek, I. Šnajdr, O. Libánský, J. Vrána, J. Pocedič, P. Mazúr, and J. Kosek: Zinc electrodeposition from flowing alkaline zincate solutions, Role of hydrogen evolution reaction. Journal of Power Sources, 2017, 372, 221-226. doi: 10.1016/j.jpowsour.2017.10.077.

- M. Froment and G. Maurin, Etude en microscopie électronique de la morphologie des dépôts électrolytiques de zinc, Electrodeposition and Surface Treatment, 1975, 3, 245-260.

- M. Kwon, D. Jo, S. H. Cho, H. T. Kim, J.-T. Park and J. M. Park: ‘Characterization of the influence ofNi content on the corrosion resistance of electrodeposited Zn-Ni alloy coatings’. Surface & Coatings Technology, 2016, 288, 163-170. doi: 10.1016/j.surfcoat.2016.01.027.

- K. Raeissi, A. Saatchi, M.A. Golozar and J.A. Szpunar, Effect of surface preparation on zinc electrodeposited texture, Surface & Coatings Technology, 2005, 197, 229-237. doi: 10.1016/j.surfcoat, 2004.09.024.

- P.K. Leung, C. Ponce-de-Leon, C.T.J. Low, and F.C. Walsh: ‘Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery’. Electrochimica Acta, 2011, 56, 6536- 6546. doi:10.1016/j.electacta.2011.04.111.

- A. Gomes and M.I. da Silva Pereira, Pulsed electrodeposition of Zn in the presence of surfactants,.Electrochimica Acta, 2006, 51, 1342-1350. doi:10.1016/j.electacta.2005.06.023.

- N. Alias and A. A. Mohamad, Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries, Journal of King Saud University - Engineering Sciences, 2015, 27, 43-48. doi: 10.1016/j.jksues.2013.03.003

- A. Sharma, Y. J. Jang and J. P. Jung: ‘Effect of current density on the morphology of electroplated tin’. Surface Engineering, 2015, 31, 458-464. doi: 10.1179/1743294414Y.0000000427.

- K. Gang, L. Lingyan, L. Jintang, C. Chunshan and Z. Zheng: ‘Study on lanthanum salt conversion coating modified with citric acid on hot dip galvanized steel’. Journal of rare earths, 2010, 28, 461-465. doi: 10.1016/S1002-0721(09)60134-4.

- J. Zhang, C. Gu and J. Tu, Potentiodynamic deposition and corrosion behavior of thin Zn-Sn coatings with layered structure and varied composition from deep eutectic solvent’. Surface & Coatings Technology, 2016, doi: 10.1016/j.surfcoat.2016.10.004

- G. T. Rogers 1, M. J. Ware and R. Y. Fellows, The Incorporation of Sulfur in Electrodeposited Nickel, Using Thiourea as a Brightener and Leveler, Journal of the electrochemical society, 1960, 107, 677-682.

- N. P.Wasekar, P. Haridoss, S.K. Seshadri, and G. Sundararajan: ‘Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings’. Surface & Coatings Technology, 2016, 291, 130-140. doi: 10.1016/j.surfcoat.2016.02.024.




DOI: http://dx.doi.org/10.13171/mjc8119021318mo

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Mediterranean Journal of Chemistry