Cover Image

Monoclinic Li2TiO3 Nano-particles via sol-gel method: Structure and impedance spectroscopy

Fatima Zahra Krimech, Salaheddine Sayouri, Taj-Edine Lamcharfi, Fatima Zahra Ahjyaje


Pure phase Li2TiO3 nano-particles were synthesized by the sol-gel method and the structural properties were examined with X-ray diffraction (XRD) technique. The latter showed that these materials, heat treated at relatively low temperature 900°C during 4h compared to the conventional solid-state reaction which calcination temperature is about 900–1100°C for 10 h; crystallize in the monoclinic phase without the presence of secondary phases. The microstructure of the LT ceramic (sintered at 1100°C) were determined by SEM and a good crystalline nature was observed with an average of granular size 2 μm. Moreover, the impedance spectroscopy showed at a higher temperature of 500°C the low-frequency arc due either to the grain boundary or sample-electrode charge transport processes.

Full Text:



C. Johnson, E. Hollenberg, G. W. Roux and H. Watanabe , Current experimental activities for solid breeder development, Fusion Engineering and Design 1989, 8, 145-153.

L.Giancarli, V. Chuyanov, M. Abdou, M. Akiba, B. G. Hong, R. Lässe and Y. Strebkov, Test blanket modules in ITER: an overview of proposed designs and required DEMO-relevant materials. Journal of Nuclear Materials 2007, 367, 1271-1280.

N. Roux, J.Avon, A. Floreancing, J. Mougin, B. Rasneur, and S.Ravel, Low-temperature tritium releasing ceramics as potential materials for the ITER breeding blanket, Journal of nuclear materials 1996, 233, 1431-1435.

N.Roux, S.Tanaka, C. Johnson, and R. Verrall, Ceramic breeder material development, Fusion engineering and design 1998, 41(1), 31-38.

J. P. Kopasz, J. M. Miller and C. E. Johnson, Tritium release from lithium titanate, a low-activation tritium breeding material, Journal of nuclear materials 1994, 212, 927-931.

H. Kleykamp, Phase equilibria in the Li-Ti-O system and physical properties of Li2TiO3. Fusion Eng Des 2002, 61-62, 361–366.

G. Izquierdo, A.R. West, Mater. Res. Bull 1980, (15), 1655.

J.C. Mikkelsen, J. Am. Ceram. Soc 1980, (63), 331.

X. Wu, Z. Wen, B. Lin, X. Xu, Sol-gel synthesis and sintering of nanosize Li2TiO3 powder, Materials Letters 2008, 62 (6–7), 837–839.

C.H. Jung, J.Y. Park, S.J. Oh, H.K. Park, Y.S. Kim, D.K. Kim, J.H. Kim, Synthesis of Li2TiO3 ceramic breeder powders by the combustionprocess, Journal of Nuclear Materials 1998, 253, 203–212.

A. Sinha, S.R. Nair, P.K. Sinha, Single-step synthesis of Li2TiO3 powder, Journal of Nuclear Materials 2010, 399,162–166.

C.H. Jung, S.J. Lee, W.M. Kriven, J.Y. Park, W.S. Ryu, A polymer solution technique for the synthesis of nano-sized Li2TiO3 ceramic breeder powders, Journal of Nuclear Materials 2008, 373, 194–198.

M. Castellanos, A.R. West, Order-disorder phenomena in oxides with rock salt structure the system Li2TiO3–MgO, Journal of Materials Science 1979, 14, 450–454.

M.D. Aguas, G.C. Coombe, I.P. Parkin, New solid state routes to lithium transition metal oxides via reaction with lithium oxide, Polyhedron 1998, 17, 49–53.

G. Bhaskar Kumar, S. Buddhudu, Synthesis and emission analysis of RE3+ (Eu3+ or Dy3+): Li2TiO3 ceramics, Ceramics International 2009, 35, 521–525.

F. Krimech, S. Sayouri and T. Lamcharfi. Synthesis, structural and dielectric properties of Li-doped BaTiO3 nanopowders by sol-gel method, Journal of Ceramic Processing Research 2017, 18, 536-542.

D. Cruz, H. Pfeiffer, S. Bulbulian, Solid State Sci 2006, 8, 470.

H. Kleykamp, Fusion Eng. Des. 2002, 61-62, 361-366.

TA. Denisova, LG. Maksimova, EV. Polyakov, NA. Zhuravlev, SA.Kovyazina, ON. Leonidova, DF. Khabibulin, Yur’eva EI Metatitanic acid: synthesis and properties. Russ J Inorg Chem 2006, 51, 691–699.

R. Ramaraghavulu, S. Buddhudu, G. Bhaskar Kumar, Ceramics International 2011, 37, 1245–1249.

Th. Fehr, E. Schmidbauer. Electrical conductivity of Li2TiO3 ceramics, Solid State Ionics 2007, 178, 35–41.



  • There are currently no refbacks.

Copyright (c) 2019 Mediterranean Journal of Chemistry